Evaluating Computing Systems
Using Fault-Injection and RAS
Metrics and Models

Rean Griffith
Thesis Proposal
February 28% 2007

Outline

® Background (Goal, Motivation)

® Problem

® Requirements (Big Picture View)

® Hypotheses

® Solution Part I — Fault Injection via Kheiron

® Solution Part II — RAS-Models + 7U-evaluation
® Accomplishments

B Timeline

B Expected Contributions And Future Work

Goal

® A methodology for evaluating computing
systems based on their reliability, availability and
serviceability properties.

Why Bother?

B We understand speed (very well)
® We use speed as our primary evaluation measure

® But...fast computers fail and so do slower ones

® Users demand that computing systems are also:
® Reliable, Highly available and Serviceable (easy to

manage, repair and recover)

B But...
B Faster |= Motre Reliable
B Faster |= Motre Available
B Faster |= More Serviceable

® How do we evaluate RAS-properties? We need
other measures to draw conclusions on “better’.

Wait a minute...

® Haven’t we been here beforer
® 70’s — Fault-tolerant Computing (FTC).
" 80’s — Dependable Systems and Networks (DSN).
" 90’s+ — Self-Managing/ Autonomic Systems (AC).

B \What have we learned so far?

® F'TC — Fault Avoidance, Fault Masking via
Redundancy, N-Versions etc.

® DSN — Reliability & Awvailability via Robustness.

B AC — Feedback architectures, 4 sub-areas of focus
(selt-contiguration, self-healing, selt-optimizing, self-
protecting)

Quick Terminology

B Reliability
® Number or frequency of client interruptions
B Availability

B A function of the rate of failure/maintenance events
and the speed of recovery

® Serviceability

" A function of the number of service-visits, their
duration and associated costs

More Terms...

® Error
® Deviation of system state from correct service state

B Fault
® Hypothesized cause of an error

B Fault Model

® Set of faults the system is expected to respond to
® Remediation
® Process of correcting a fault (detect, diagnose, repair)

B Failure

® Delivered service violates an environmental
constraint e.g. SLLA ot policy

Requirements

® How do we study a system’s RAS-properties?
" Construct a representative fault-model

® Build fault-injection tools to induce the faults in the
fault-model

® Study the impact of faults on the target system with
any remediation mechanisms turned off then on

® Evaluate the efficacy of any existing remediation
mechanisms via their impact on SLAs, policies, etc.

® Evaluate the expected impact of yet-to-be added
remediation mechanisms (if possible)

Hypotheses

® Runtime adaptation is a reasonable technology for
implementing efficient and flexible fault-injection tools.

® RAS-models, represented as Continuous Time Markow
Chains (CTMCs), are a reasonable framework for
analyzing system failures, remediation mechanisms and
their impact on system operation.

® RAS-models and fault-injection experiments can be
used together to model and measure the RAS-
characteristics of computing systems. This combination
links the details of the mechanisms to the high-level
goals governing the system’s operation, supporting
comparisons of individual or combined mechanisms.

Spoiler...

B Part I

® Kheiron a new framework for runtime—adaptation n
a variety of applications in multiple execution
environments.

® Fault-injection tools built on top of Kheiron

B Part I1

® System analysis using RAS-models.

® The 7-steps (our proposed 7U-evaluation)
methodology linking the analysis of individual and
combined mechanisms to the high-level goals

governing the system’s operation.
10

=W
=W
=W
=W

One “What” & Three “Why’s”

nat is runtime-adaptation?
hy runtime-adaptation?

ny build fault-tools using this technology?

ny build our own fault tools?

11

Four answers...

® What 1s runtime-adaptation?

® Ability to make changes to applications while they
execute.

® Why runtime-adaptation?

" Flexible, preserves availability, manages performance
® Why build fault-tools using this technology?

" Fine-grained interaction with application internals.

® Why build our own fault tools?

B Different fault-model /focus from robustness
oriented tools like FAUMachine, Ferrari, Ftape,
Doctor, Xception, FIST, MARS, Holodeck and Jaca.

Kheiron Features

® Able to make changes in running .NET, Java
and Compiled C-applications.

B | ow overhead.

® Transparent to both the application and the
execution environments.

® No need for source-code access.

® No need for specialized versions of the
execution environments.

13

How Stuff Works

" 3 implementations of Kheiron
® Kheiron/CLR, Kheiron/JVM and Kheiron/C

® Key observation

" All software runs in an execution environment (EE),
so use it to facilitate adapting the applications it
hosts.

® Two kinds of EEs
® Unmanaged (Processor + OS e.g. x86 + Linux)
® Managed (CLR, JVM)

® Tor this to work the EE needs to provide 4
facilities. ..

14

EE-Suppott

EE Facilities Unmanaged Managed Execution Environment
Execution
Environment
ELF Binaries JVM 5.x CLR 1.1
Program tracing | ptrace, /proc JVMTT callbacks + ICorProfilerInfo
API ICorProfilerCallback
Program control | Trampolines + Bytecode rewriting MSIL rewriting

Dyninst

Execution unit

.symtab, .debug

Classtile constant pool

Assembly, type &

metadata sections + bytecode method metadata +
MSIL
Metadata N/A for compiled | Custom classfile IMetaDatalmport,
augmentation C-programs parsing & editing APIs | IMetaDataEmit APIs
+ JVMTI
RedefineClasses

15

Kheiron/CLR & Kheiron/JVM

A

Bytecode
Method
body

e

SampleMethod

Operation
B
Prepare O
P Create Bytecode
Shadow Shadow
Method
Bytecode Bod Bytecode
Method y Method
body Call body
_Sample
/\ vieghod \
SampleMethod _SampleMethod SampleMethod

SampleMethod(args) [throws NullPointerException]
<room for prolog>

push args

call _SampleMethod(args) [throws NullPointerException]
{ try{...} catch (IOException ioe){...} } // Source view of _SampleMethod’s body
<room for epilog>
return value/void

_SampleMethod

16

Kheiron/CLR & Kheiron/JVM Fault-
Rewrite

public void someMethod()
{

call StatsCop.methodEnter("someMethod") // profile method enter

call FaultManager.injectFault("someMethod") // lookup fault to inject
call _someMethod(); // call original implementation of someMethod
call StatsCop.methodExit("someMethod") // profile method exit

17

Kheiron/C Operation

Mutator

Kheiron/C

Dyninst API

Dyninst Code

ptrace/procfs

Application

void foo(int X, int y)

{

Points<: intz=0;
)

Snippets

C/C++
Runtime
Library

18

Kheiron/C — Prologue Example

static inti= 0,
compile time | 8048
vaid SomeFunc() —_— 20481
20481
i=i+10 2804810a:
a04810b:

g 1 5d
804910b: c3

40689980 <trampol
save CPU registers

(jurnp to

ed by
ebp (next vahd in
urn to calling function)

flinserted assembly from snippet &.g. a function call

restore CPU registers
jump to savedirelocated instructions

19

=
2
5
2
1=
2
]
o
2
=
@
H
g
S
£
@
o
£
]
E
5
t
]
o

Kheiron/CLR & Kheiron/JVM
Feasibility

Performance comparison - normalized to w/o profiler - no repair Performance comparison - normalized to wfo profiler - no repair
active active

mwithout profiler
#Hwith profiler

W without profiler
B with profiler

Performance nommalized to wio profiler

Linpack SciMark Linpack

Benchmarks Benchmarks

Kheiron/CLR Overheads Kheiron/JVM Overheads
when no adaptations active when no adaptations active

20

Kheiron/C Feasibility

Performance comparison SciMark - normalized to
w/o Dyninst - simple jump into adaptation library

W Normalized w/o Dyninst
O Normalized w/Dyninst

o
=
(=]

]

=
4]

N

R
£Ec
c &
o O
[&]
[
m
£
| =

e
[==
[sh]

o

Kheiron/C Overheads

when no adaptations active

21

Sophisticated Runtime Adaptations

® Transparent hot-swap of the job scheduler
component in the Alchemi Enterprise Grid
Computing System using Kheiron/CLR

" Kheiron/CILR performs a component hot-swap

without disrupting work in the grid or crashing the
CLR.

® Supporting the selective emulation of compiled
C-functions using Kheiron/C

B Kheiron/C loads the STEM x86 emulator into the
address space of a target program and causes
selected functions to run under emulation rather

than on the real processor. ,

Part I Summary

B Kheiron supports contemporary managed and
unmanaged execution environments.

B [ow-overhead (<5% performance hit).

® Transparent to both the application and the
execution environment.

® Access to application internals
® (Class instances (objects) & Data structures
" Components, Sub-systems & Methods

® Capable of sophisticated adaptations.

® ault-injection tools built with Kheiron leverage
all its capabilities.

23

Outline

R HGoal Motivation
B Problem

B Recri Bio P View

" Hypotheses—

B S bt Pt e P et e

B Solution Part I — RAS-Models + 7U-evaluation
® Accomplishments

B Timeline

B Expected Contributions And Future Work

24

Target System for RAS-study

® N-Tier web application

" TPC-W web-application & Remote Browser
Emulators

® Resin 3.0.22 application server & web server
(running Sun Hotspot JVM 1.5)

= MySQL. 5.0.27
¥ [inux 2.4.18 kernel

B Fault model

® Device driver faults injected using SWIFI device
driver fault-injection tools

" Memory-leaks injected using Kheiron/JVM-based

tool 25

Expected Fault-Model Coverage

Fault Category | Target Remediation
Memory Leak Web-application System reboot (reactive)
server/Web-application | Application-server restart (reactive)
classes Avolicat
pplication-server restart
(preventative) — To Be Added
28 possible Operating system kernel | System reboot (reactive)

device driver
faults

Nooks driver recovery (reactive)

26

Analytical Tools
® RAS-models (Continuous Time Markov Chains)

® Based on Reliability Theory.
® Capable of analyzing individual or combined RAS-

enhancing mechanisms.

® Able to reason about perfect and imperfect
mechanisms.

® Able to reason about yet-to-be-added mechanisms.

® 7U-Evaluation methodology

® Combines fault-injection experiments and RAS-
models and metrics to evaluate systems.

¥ Fstablish a link between the mechanisms and their

impact on system goals/constraints.
27

Reliability Theory Techniques Used
® Continuous Time Markov Chains (CTMCs)

® Collection of states (S,, ..., S_) connected by arcs.

® Arcs between states represent transition rates.

% State transitions can occur at any instant.
® Markov assumptions
= P<Xn: in|X0:ioa° *> nl n1> P<X = |an n1>
® Birth-Death Processes (0] Q ©

® Nearest-neighbor state-transitions only.

B Non-Birth-Death Processes Q Q 9

® Nearest-neigchbor state-transition restriction relaxed
g 28

A: Fault-Free Operation

B TPC-W run takes ~24 minutes

number of MEMmory requests :

interactions: | memory requests granted :

3 fork requests : 0

forks performe

reads preformed : 3
write requests
writes performed :
open requests :
opens performed :
lose requests :
s performed :

memory
execution : nfa

reads : 99.55¢
writes @ 10
opens : 10

closes @ 1C

T 3. Metrics for Configuration A, Fault-Free Run

29

B: Memory Leak Scenatio

® 1 Failure every 8 hours (40 runs = 16 hours of activity)

® Resin restarts under low memory condition. Restart
takes ~47 seconds and resolves the issue each time.

Client-Side interactions Client-Side Interaction Trace (Runs 2, 20 and 35)
4100 A000
—+—Client interactions per run

3500
3000

2800

ctions

w
=
=}

=
[}
ad
=
1)
=
=

Inters

1000
500

10 1415
Time (minutes)

B: Memory Leak Analysis

® Birth-Death process with 2 states, 2

parameters: T

— A_failure o~
! P — b

m S, — UP state, system working
= 5, — DOWN state, system restarting
_ Y = 1/8 hrs

failure

Meepsie — 47 seconds
" Assumptions

® Perfect repair

B Results

" Limiting/steady-state availability = 99.838%

— DOWﬂtime per year = 866 minutes Availability Guarantee | Max Downtime Per Year

9¢ ~5 mins

® Is this good or bad?
" Two 9’s availability

~5256 mins

Table 3. Expected SLA Penalties for Configuration B

C: Driver Faults w/0 Nooks —
Analysis

Birth-Death process with 2 states, 2
parameters:

m S, — UP state, system working
= S5, — DOWN state, system restarting
" A .= 4/8hrs

failure

" W — 82 seconds
Assumptions

® Perfect repair
Results

" Limiting/steady-state availability = 98.87%

" Downtime pet year = 5924 minutes Aoy Cuarantee |
Is this good or bad?

® Less than Two 9’s availability

~3256 mins

D: Driver Faults w/Nooks — Analysis

® Birth-Death process with 3 states,
4 parameters: e ue'e
m S, — UP state, system working
m S, — UP state, recovering failed driver
= S,— DOWN state, system reboot
A =4/8

driver failure

Maooks recovery — H093 microseconds
" ... = 82seconds
® ¢ — coverage factor

" Assumptions

® Imperfect Repair

B Results

® Modest Nooks success rates needed

to improve system availability.

E: Complete Fault Model — Analysis

® Birth-Death process with 4 states, 5
parameters:
m S, — UP state, system working
S, — UP state, recovering failed driver
S,— DOWN state, system reboot
S, — DOWN state, Resin reboot
= 4/8 hrs

driver failure

= 4,093 microseconds

}'Lnooks_recovery

W= 82 seconds

c — coverage factor
>Lrnernory_leak_ — 1/ 8 hours

= 47 seconds

}"L restart_resin

" Assumptions
® Imperfect Repair

B Results
® Minimum downtime = 866 minutes

Ay ailability

rage Factor (Remediation Success Rate)

" Availability limited by memory leak
handling

Preventative Maintenance — Analysis

® Non-Birth-Death process with 6
states, 6 parameters:
m S, — UP state, first stage of lifetime P ¢ W

m S, — UP state, second stage of lifetime
= S, — DOWN state, Resin reboot

m S, — UP state, inspecting memory use
= §, — UP state, inspecting memotry use
= S, — DOWN state, preventative restart
B s — L/ 06 DS

" . =1/2hrts

B art resin worse — 47 seconds

" Appee — Rate of memoty use inspection
" e — 21,0627 microseconds

O

= 3 seconds

H“restart_resin_pm

B Results

® Infrequent checks could have an impact.

® Oaly by implementing such a scheme
and running experiments would we
know for sure.

Murnber of inspections per hour

Towards a RAS-Benchmark

® Thought experiment
® Type 1 — No detection capabilities.
® Type 2 — Perfect detection, no diagnosis or repait.
" Type 3 — Perfect detection and diagnosis, no repair.
" Type 4 — Perfect detection, diagnosis and repair.

" Type 5 — Perfect detection, but detectors turned off.

® HExpected ranking
" Type 1 < Type 5 < Type 2 < Type 3 < Type 4

MAacro-view goodput reliability, fault-model
availability and coverage
serviceability | (expected vs
actual)

micro-view | accuracy of speed of

detection, detection,
diagnosis and | diagnosis and
repair repair

Table 2: Example Metrics

7-Step Evaluation “Recipe”

B 7U-Evaluation methodology

" Combines fault-injection
experiments and RAS-models
and metrics to evaluate systems.

B Establish a link between the
mechanisms and their impact
on system goals/constraints.

® Highlights the role of the
environment in scoring and
comparing system.

Specify Fault
Model and
salect Fault-
Injection Tools

Specify
Remediations
and their
relationship to
faults

Decide an
Micro-
measuremeants
for
remeadiations

Specify
environment-
constraints
&.g.using SLAS
and technician
reports etc.

IJse results to
madel and
analyze the
system and its
mechanisms

Run
benchmarking
and
fault-injection
experiments

Decide on
Macro-
measurements
for systam
evaluation

37

Part II Summary

® RAS-models are powerful yet tlexible tools

® Able to analyze individual and combined
mechanisms.

® Able to analyze reactive and preventative
mechanisms.

® Capable of linking the details of the mechanisms to
their impact on system goals (SLLAs, policies etc.)

® Usetul as design-time and post-deployment analysis-
tools.

B | imitations

" Assumption of independence makes it difficult to
use them to study cascading/dependent faults.

38

Accomplishments To Date

® 3 papers on runtime adaptations
" DEAS 2005 (Kheiron/CLR).
" [CAC 2006 (Kheiron/JVM, Kheiron/C).

® Chapter in Handbook on Autonomic Computing.

B Submission to ICAC 2007

® Using RAS-models and Metrics to evaluate Self-
Healing Systems.

39

Timeline

Timeline Work Status

Develop Initial Kheiron Prototypes Completed
Jan. 2006 Submitted Kheiron Paper to ICAC Accepted
Sep. 2006 Build GUI front-end for Kheiron/JVM Ongoing
Oct. 2006 Build self-healing benchmark simulator Completed
Nov. 2006 | Build Linux-based test-bed for RAS-experiments Completed
Dec. 2006 | Run preliminary RAS-benchmarking experiments Completed
Jan. 2007 Submit paper on initial results to ICAC 2007 Completed
Feb. 2007 Write Thesis Proposal Completed
Mar. 2007 Port Linux 2.4 device driver fault tools to Linux 2.6 Ongoing
Mar. 2007 | Write device driver fault tool for Windows XP Ongoing
May. 2007 | Write proof of concept database fault injection tool Ongoing
Jun. 2007 Werite or acquire under NDA Solaris 10 fault-injection tools Ongoing
Jul. 2007 Build test machine for hardware & software fault injection Ongoing
Aug. 2007 | Start next round of RAS-experiments (Solaris,Linux,Win32) Ongoing
Jan. 2008 Thesis writing

Aug. 2008

Thesis defense

40

Expected Contributions

" Contributions towards a representative fault-model for
computing systems that can be reproduced using fault-
injection tools.

® A suite of runtime fault-injection tools to complement
existing software-based and hardware-based fault-
injection tools.

® A survey of the RAS-enhancing mechanisms (ot lack
thereof) in contemporary operating systems and
application servers.

" Analytical techniques that can be used at design-time or
post-deployment time.

® A RAS-benchmarking methodology based on practical

fault-injection tools and rigorous analytical techniques.

41

B Questions?
B Comments?

B Queries?

Thank You...

42

Backup Slides

43

Kheiron Architecture from 10,0001t

Target Target
Application 2 Application 1

Execution I&fn'-.-nrr:mn'nent

Frocaess Boundan

Adaptation Library

Fault Injection/
Disturbance Library
Visualization
Library

Communication
Litzrary

44

How Kheiron Works

® Attaches to programs while they run or when they load.

® Interacts with programs while they run at various points
of their execution.

" Augments type definitions and/or executable code

® Needs metadata — rich metadata is better

Interposes at method granularity, inserting new
functionality via method prologues and epilogues.

Control can be transferred into/out of adaptation
library logic

Control-flow changes can be done/un-done
dynamically

45

System Operation

Time period/ Unmanaged/Native Managed Applications
execution event | A\pplications VM 5 CLR 11
(C-Programs)
Application start | Attach Kheiron, augment | Load Kheiron/JVM Load Kheiron/CLR
methods
Module load No real metadata to Augment type Augment type
manipulate definition, augment definition, augment
module metadata, module metadata
bytecode rewrite
Method Transfer control to Transfer control to Transfer control to
invoke/entry adaptation logic adaptation logic adaptation logic
Method JIT n/a No explicit Augment module
notifications metadata, MSIL
rewrite, force re-jit
Method exit Transfer control to Transfer control to Transfer control to

adaptation logic

adaptation logic

adaptation logic

46

Experiments

Goal: Measure the feasibility of our approach.

Look at the impact on execution when no
repairs/adaptations are active.

Selected compute-intensive applications as test subjects
(SciMark and Linpack).

Unmanaged experiments

" P4 2.4 GHz processor, 1GB RAM, SUSE 9.2, 2.6.8x kernel,
Dyninst 4.2.1.

Managed experiments

® P3 Mobile 1.2 GHz processor, 1GB RAM, Windows XP
SP2, Java HotspotVM v1.5 update 04.

47

Unmanaged Execution Environment

Metadata

Symbol Table Entry

typedef atruct |
E1f3Z Word at_nams;
E1f22 Addr at_wvalue;

E1f32 Word at_size;

unaigned char at_info;

unaigned char at _other;

E1f2Z Half at _shndx;
| E1f32 Eym;

STT NOTYER
ETT CBJRCT
STT FUNC

STT SECTION

® Not enough information to support type discovery and/or

type relationships.

® No APIs for metadata manipulation.

® In the managed world, units of execution are self-

describing.

48

