
 1

Evaluating Computing SystemsEvaluating Computing Systems
Using Fault-Injection and RAS Using Fault-Injection and RAS

Metrics and ModelsMetrics and Models

Rean GriffithRean Griffith
Thesis ProposalThesis Proposal

February 28February 28thth 2007 2007

 2

OutlineOutline
 Background (Goal, Motivation)Background (Goal, Motivation)
 ProblemProblem
 Requirements (Big Picture View)Requirements (Big Picture View)
 HypothesesHypotheses
 Solution Part I – Fault Injection via KheironSolution Part I – Fault Injection via Kheiron
 Solution Part II – RAS-Models + 7U-evaluationSolution Part II – RAS-Models + 7U-evaluation
 AccomplishmentsAccomplishments
 TimelineTimeline
 Expected Contributions And Future WorkExpected Contributions And Future Work

 3

GoalGoal
 A methodology for evaluating computing A methodology for evaluating computing

systems based on their reliability, availability and systems based on their reliability, availability and
serviceability properties.serviceability properties.

 4

Why Bother?Why Bother?
 We understand speed (very well)We understand speed (very well)

 We use speed as our primary evaluation measureWe use speed as our primary evaluation measure
 But…fast computers fail and so do slower onesBut…fast computers fail and so do slower ones
 Users demand that computing systems are also:Users demand that computing systems are also:

 Reliable, Highly available and Serviceable (easy to Reliable, Highly available and Serviceable (easy to
manage, repair and recover)manage, repair and recover)

 But…But…
 Faster != More ReliableFaster != More Reliable
 Faster != More AvailableFaster != More Available
 Faster != More ServiceableFaster != More Serviceable

 How do we evaluate RAS-properties? We need How do we evaluate RAS-properties? We need
other measures to draw conclusions on “better”.other measures to draw conclusions on “better”.

 5

Wait a minute…Wait a minute…
 Haven’t we been here before?Haven’t we been here before?

 70’s – Fault-tolerant Computing (FTC).70’s – Fault-tolerant Computing (FTC).
 80’s – Dependable Systems and Networks (DSN).80’s – Dependable Systems and Networks (DSN).
 90’s+ – Self-Managing/Autonomic Systems (AC).90’s+ – Self-Managing/Autonomic Systems (AC).

 What have we learned so far?What have we learned so far?
 FTC – Fault Avoidance, Fault Masking via FTC – Fault Avoidance, Fault Masking via

Redundancy, N-Versions etc.Redundancy, N-Versions etc.
 DSN – Reliability & Availability via Robustness.DSN – Reliability & Availability via Robustness.
 AC – Feedback architectures, 4 sub-areas of focus AC – Feedback architectures, 4 sub-areas of focus

(self-configuration, self-healing, self-optimizing, self-(self-configuration, self-healing, self-optimizing, self-
protecting)protecting)

 6

Quick TerminologyQuick Terminology
 ReliabilityReliability

 Number or frequency of client interruptionsNumber or frequency of client interruptions
 AvailabilityAvailability

 A function of the rate of failure/maintenance events A function of the rate of failure/maintenance events
and the speed of recoveryand the speed of recovery

 ServiceabilityServiceability
 A function of the number of service-visits, their A function of the number of service-visits, their

duration and associated costsduration and associated costs

 7

More Terms…More Terms…
 ErrorError

 Deviation of system state from correct service stateDeviation of system state from correct service state
 FaultFault

 Hypothesized cause of an errorHypothesized cause of an error
 Fault ModelFault Model

 Set of faults the system is expected to respond toSet of faults the system is expected to respond to
 RemediationRemediation

 Process of correcting a fault (detect, diagnose, repair)Process of correcting a fault (detect, diagnose, repair)
 FailureFailure

 Delivered service violates an environmental Delivered service violates an environmental
constraint e.g. SLA or policyconstraint e.g. SLA or policy

 8

RequirementsRequirements
 How do we study a system’s RAS-properties?How do we study a system’s RAS-properties?

 Construct a representative fault-modelConstruct a representative fault-model
 Build fault-injection tools to induce the faults in the Build fault-injection tools to induce the faults in the

fault-modelfault-model
 Study the impact of faults on the target system with Study the impact of faults on the target system with

any remediation mechanisms turned off then onany remediation mechanisms turned off then on
 Evaluate the efficacy of any existing remediation Evaluate the efficacy of any existing remediation

mechanisms via their impact on SLAs, policies, etc.mechanisms via their impact on SLAs, policies, etc.
 Evaluate the expected impact of yet-to-be added Evaluate the expected impact of yet-to-be added

remediation mechanisms (if possible)remediation mechanisms (if possible)

 9

HypothesesHypotheses
 Runtime adaptation is a reasonable technology for Runtime adaptation is a reasonable technology for

implementing efficient and flexible fault-injection tools.implementing efficient and flexible fault-injection tools.
 RAS-models, represented as Continuous Time Markov RAS-models, represented as Continuous Time Markov

Chains (CTMCs), are a reasonable framework for Chains (CTMCs), are a reasonable framework for
analyzing system failures, remediation mechanisms and analyzing system failures, remediation mechanisms and
their impact on system operation.their impact on system operation.

 RAS-models and fault-injection experiments can be RAS-models and fault-injection experiments can be
used together to model and measure the RAS-used together to model and measure the RAS-
characteristics of computing systems. This combination characteristics of computing systems. This combination
links the details of the mechanisms to the high-level links the details of the mechanisms to the high-level
goals governing the system’s operation, supporting goals governing the system’s operation, supporting
comparisons of individual or combined mechanisms.comparisons of individual or combined mechanisms.

 10

Spoiler…Spoiler…

 Part IPart I
 Kheiron a new framework for runtime-adaptation in Kheiron a new framework for runtime-adaptation in

a variety of applications in multiple execution a variety of applications in multiple execution
environments. environments.

 Fault-injection tools built on top of KheironFault-injection tools built on top of Kheiron
 Part II Part II

 System analysis using RAS-models.System analysis using RAS-models.
 The 7-steps (our proposed 7U-evaluation) The 7-steps (our proposed 7U-evaluation)

methodology linking the analysis of individual and methodology linking the analysis of individual and
combined mechanisms to the high-level goals combined mechanisms to the high-level goals
governing the system’s operation.governing the system’s operation.

 11

One “What” & Three “Why’s”One “What” & Three “Why’s”

 What is runtime-adaptation?What is runtime-adaptation?
 Why runtime-adaptation?Why runtime-adaptation?
 Why build fault-tools using this technology?Why build fault-tools using this technology?
 Why build our own fault tools?Why build our own fault tools?

 12

Four answers…Four answers…
 What is runtime-adaptation?What is runtime-adaptation?

 Ability to make changes to applications while they Ability to make changes to applications while they
execute.execute.

 Why runtime-adaptation?Why runtime-adaptation?
 Flexible, preserves availability, manages performanceFlexible, preserves availability, manages performance

 Why build fault-tools using this technology?Why build fault-tools using this technology?
 Fine-grained interaction with application internals.Fine-grained interaction with application internals.

 Why build our own fault tools?Why build our own fault tools?
 Different fault-model/focus from robustness Different fault-model/focus from robustness

oriented tools like FAUMachine, Ferrari, Ftape, oriented tools like FAUMachine, Ferrari, Ftape,
Doctor, Xception, FIST, MARS, Holodeck and Jaca.Doctor, Xception, FIST, MARS, Holodeck and Jaca.

 13

Kheiron FeaturesKheiron Features
 Able to make changes in running .NET, Java Able to make changes in running .NET, Java

and Compiled C-applications.and Compiled C-applications.
 Low overhead.Low overhead.
 Transparent to both the application and the Transparent to both the application and the

execution environments.execution environments.
 No need for source-code access.No need for source-code access.
 No need for specialized versions of the No need for specialized versions of the

execution environments. execution environments.

 14

How Stuff WorksHow Stuff Works
 3 implementations of Kheiron3 implementations of Kheiron

 Kheiron/CLR, Kheiron/JVM and Kheiron/CKheiron/CLR, Kheiron/JVM and Kheiron/C
 Key observationKey observation

 All software runs in an execution environment (EE), All software runs in an execution environment (EE),
so use it to facilitate adapting the applications it so use it to facilitate adapting the applications it
hosts.hosts.

 Two kinds of EEsTwo kinds of EEs
 Unmanaged (Processor + OS e.g. x86 + Linux)Unmanaged (Processor + OS e.g. x86 + Linux)
 Managed (CLR, JVM)Managed (CLR, JVM)

 For this to work the EE needs to provide 4 For this to work the EE needs to provide 4
facilities…facilities…

 15

EE-SupportEE-Support

IMetaDataImport,
IMetaDataEmit APIs

Custom classfile
parsing & editing APIs
+ JVMTI
RedefineClasses

N/A for compiled
C-programs

Metadata
augmentation

Assembly, type &
method metadata +
MSIL

Classfile constant pool
+ bytecode

.symtab, .debug
sections

Execution unit
metadata

MSIL rewritingBytecode rewritingTrampolines +
Dyninst

Program control

ICorProfilerInfo
ICorProfilerCallback

JVMTI callbacks +
API

ptrace, /procProgram tracing
CLR 1.1JVM 5.xELF Binaries

Managed Execution EnvironmentUnmanaged
Execution
Environment

EE Facilities

 16

Kheiron/CLR & Kheiron/JVM Kheiron/CLR & Kheiron/JVM
OperationOperation

SampleMethod

Bytecode
Method
body

SampleMethod

Bytecode
Method
body

_SampleMethod SampleMethod

New
Bytecode
Method
Body

Call
_Sample
Method

_SampleMethod

Bytecode
Method
body

A B C
Prepare
Shadow

Create
Shadow

SampleMethod(args) [throws NullPointerException]
 <room for prolog>
 push args
 call _SampleMethod(args) [throws NullPointerException]
 { try{…} catch (IOException ioe){…} } // Source view of _SampleMethod’s body
 <room for epilog>
 return value/void

 17

Kheiron/CLR & Kheiron/JVM Fault-Kheiron/CLR & Kheiron/JVM Fault-
RewriteRewrite

 18

Kheiron/C OperationKheiron/C Operation

Kheiron/C

Dyninst API

Dyninst Code

ptrace/procfs

void foo(int x, int y)
{
 int z = 0;
}

Snippets
C/C++

Runtime
Library

Points

ApplicationMutator

 19

Kheiron/C – Prologue ExampleKheiron/C – Prologue Example

 20

Kheiron/CLR & Kheiron/JVM Kheiron/CLR & Kheiron/JVM
FeasibilityFeasibility

Kheiron/CLR Overheads
when no adaptations active

Kheiron/JVM Overheads
when no adaptations active

 21

Kheiron/C FeasibilityKheiron/C Feasibility

Kheiron/C Overheads
when no adaptations active

 22

Sophisticated Runtime AdaptationsSophisticated Runtime Adaptations
 Transparent hot-swap of the job scheduler Transparent hot-swap of the job scheduler

component in the Alchemi Enterprise Grid component in the Alchemi Enterprise Grid
Computing System using Kheiron/CLRComputing System using Kheiron/CLR
 Kheiron/CLR performs a component hot-swap Kheiron/CLR performs a component hot-swap

without disrupting work in the grid or crashing the without disrupting work in the grid or crashing the
CLR.CLR.

 Supporting the selective emulation of compiled Supporting the selective emulation of compiled
C-functions using Kheiron/CC-functions using Kheiron/C
 Kheiron/C loads the STEM x86 emulator into the Kheiron/C loads the STEM x86 emulator into the

address space of a target program and causes address space of a target program and causes
selected functions to run under emulation rather selected functions to run under emulation rather
than on the real processor.than on the real processor.

 23

Part I SummaryPart I Summary
 Kheiron supports contemporary managed and Kheiron supports contemporary managed and

unmanaged execution environments.unmanaged execution environments.
 Low-overhead (<5% performance hit).Low-overhead (<5% performance hit).
 Transparent to both the application and the Transparent to both the application and the

execution environment.execution environment.
 Access to application internalsAccess to application internals

 Class instances (objects) & Data structuresClass instances (objects) & Data structures
 Components, Sub-systems & MethodsComponents, Sub-systems & Methods

 Capable of sophisticated adaptations.Capable of sophisticated adaptations.
 Fault-injection tools built with Kheiron leverage Fault-injection tools built with Kheiron leverage

all its capabilities.all its capabilities.

 24

OutlineOutline
 Background (Goal, Motivation)Background (Goal, Motivation)
 ProblemProblem
 Requirements (Big Picture View)Requirements (Big Picture View)
 HypothesesHypotheses
 Solution Part I – Fault Injection via KheironSolution Part I – Fault Injection via Kheiron
 Solution Part II – RAS-Models + 7U-evaluationSolution Part II – RAS-Models + 7U-evaluation
 AccomplishmentsAccomplishments
 TimelineTimeline
 Expected Contributions And Future WorkExpected Contributions And Future Work

 25

Target System for RAS-studyTarget System for RAS-study
 N-Tier web applicationN-Tier web application

 TPC-W web-application & Remote Browser TPC-W web-application & Remote Browser
Emulators Emulators

 Resin 3.0.22 application server & web server Resin 3.0.22 application server & web server
(running Sun Hotspot JVM 1.5)(running Sun Hotspot JVM 1.5)

 MySQL 5.0.27MySQL 5.0.27
 Linux 2.4.18 kernelLinux 2.4.18 kernel

 Fault modelFault model
 Device driver faults injected using SWIFI device Device driver faults injected using SWIFI device

driver fault-injection toolsdriver fault-injection tools
 Memory-leaks injected using Kheiron/JVM-based Memory-leaks injected using Kheiron/JVM-based

tooltool

 26

Expected Fault-Model CoverageExpected Fault-Model Coverage

System reboot (reactive)
Application-server restart (reactive)
Application-server restart
(preventative) – To Be Added

Web-application
server/Web-application
classes

Memory Leak

System reboot (reactive)
Nooks driver recovery (reactive)

Operating system kernel28 possible
device driver
faults

RemediationTargetFault Category

 27

Analytical ToolsAnalytical Tools
 RAS-models (Continuous Time Markov Chains)RAS-models (Continuous Time Markov Chains)

 Based on Reliability Theory.Based on Reliability Theory.
 Capable of analyzing individual or combined RAS-Capable of analyzing individual or combined RAS-

enhancing mechanisms.enhancing mechanisms.
 Able to reason about perfect and imperfect Able to reason about perfect and imperfect

mechanisms.mechanisms.
 Able to reason about yet-to-be-added mechanisms. Able to reason about yet-to-be-added mechanisms.

 7U-Evaluation methodology7U-Evaluation methodology
 Combines fault-injection experiments and RAS-Combines fault-injection experiments and RAS-

models and metrics to evaluate systems.models and metrics to evaluate systems.
 Establish a link between the mechanisms and their Establish a link between the mechanisms and their

impact on system goals/constraints.impact on system goals/constraints.

 28

Reliability Theory Techniques UsedReliability Theory Techniques Used
 Continuous Time Markov Chains (CTMCs)Continuous Time Markov Chains (CTMCs)

 Collection of states (SCollection of states (S00, …, S, …, Snn) connected by arcs.) connected by arcs.
 Arcs between states represent transition rates.Arcs between states represent transition rates.
 State transitions can occur at any instant.State transitions can occur at any instant.

 Markov assumptionsMarkov assumptions
 P(XP(Xnn= i= inn|X|X00=i=i00,…,X,…,Xn-1n-1=i=in-1n-1)=P(X)=P(Xnn= i= inn|X|Xn-1n-1=i=in-1n-1))

 Birth-Death ProcessesBirth-Death Processes
 Nearest-neighbor state-transitions only.Nearest-neighbor state-transitions only.

 Non-Birth-Death ProcessesNon-Birth-Death Processes
 Nearest-neighbor state-transition restriction relaxed.Nearest-neighbor state-transition restriction relaxed.

0 1 2

0 1 2

 29

A: Fault-Free OperationA: Fault-Free Operation

 TPC-W run takes ~24 minutesTPC-W run takes ~24 minutes

 30

B: Memory Leak ScenarioB: Memory Leak Scenario

 1 Failure every 8 hours (40 runs = 16 hours of activity)1 Failure every 8 hours (40 runs = 16 hours of activity)
 Resin restarts under low memory condition. Restart Resin restarts under low memory condition. Restart

takes ~47 seconds and resolves the issue each time.takes ~47 seconds and resolves the issue each time.

 31

B: Memory Leak AnalysisB: Memory Leak Analysis
 Birth-Death process with 2 states, 2 Birth-Death process with 2 states, 2

parameters:parameters:
 SS00 – UP state, system working – UP state, system working
 SS11 – DOWN state, system restarting – DOWN state, system restarting
 λλfailurefailure = 1/8 hrs = 1/8 hrs
 µµrepairrepair = 47 seconds = 47 seconds

 Assumptions Assumptions
 Perfect repairPerfect repair

 ResultsResults
 Limiting/steady-state availability = 99.838%Limiting/steady-state availability = 99.838%
 Downtime per year = 866 minutesDowntime per year = 866 minutes

 Is this good or bad?Is this good or bad?
 Two 9’s availabilityTwo 9’s availability

 32

C: Driver Faults w/o Nooks – C: Driver Faults w/o Nooks –
AnalysisAnalysis

 Birth-Death process with 2 states, 2 Birth-Death process with 2 states, 2
parameters:parameters:
 SS00 – UP state, system working – UP state, system working
 SS11 – DOWN state, system restarting – DOWN state, system restarting
 λλfailurefailure = 4/8 hrs = 4/8 hrs
 µµrepairrepair = 82 seconds = 82 seconds

 Assumptions Assumptions
 Perfect repairPerfect repair

 ResultsResults
 Limiting/steady-state availability = 98.87%Limiting/steady-state availability = 98.87%
 Downtime per year = 5924 minutesDowntime per year = 5924 minutes

 Is this good or bad?Is this good or bad?
 Less than Two 9’s availabilityLess than Two 9’s availability

 33

D: Driver Faults w/Nooks – AnalysisD: Driver Faults w/Nooks – Analysis
 Birth-Death process with 3 states, Birth-Death process with 3 states,

4 parameters:4 parameters:
 SS00 – UP state, system working – UP state, system working
 SS11 – UP state, recovering failed driver – UP state, recovering failed driver
 SS22 – DOWN state, system reboot – DOWN state, system reboot
 λλdriver_failure driver_failure = 4/8= 4/8
 µµnooks_recovery nooks_recovery = 4,093 microseconds= 4,093 microseconds
 µµreboot reboot = 82 seconds= 82 seconds
 c – coverage factorc – coverage factor

 Assumptions Assumptions
 Imperfect RepairImperfect Repair

 ResultsResults
 Modest Nooks success rates needed Modest Nooks success rates needed

to improve system availability.to improve system availability.

 34

E: Complete Fault Model – AnalysisE: Complete Fault Model – Analysis
 Birth-Death process with 4 states, 5 Birth-Death process with 4 states, 5

parameters:parameters:
 SS00 – UP state, system working – UP state, system working
 SS11 – UP state, recovering failed driver – UP state, recovering failed driver
 SS22 – DOWN state, system reboot – DOWN state, system reboot
 SS33 – DOWN state, Resin reboot – DOWN state, Resin reboot
 λλdriver_failure driver_failure = 4/8 hrs= 4/8 hrs
 µµnooks_recovery nooks_recovery = 4,093 microseconds= 4,093 microseconds
 µµreboot reboot = 82 seconds= 82 seconds
 c – coverage factorc – coverage factor
 λλmemory_leak_ memory_leak_ = 1/8 hours= 1/8 hours
 µµrestart_resin restart_resin = 47 seconds= 47 seconds

 Assumptions Assumptions
 Imperfect RepairImperfect Repair

 ResultsResults
 Minimum downtime = 866 minutesMinimum downtime = 866 minutes
 Availability limited by memory leak Availability limited by memory leak

handlinghandling

 35

Preventative Maintenance – AnalysisPreventative Maintenance – Analysis
 Non-Birth-Death process with 6 Non-Birth-Death process with 6

states, 6 parameters:states, 6 parameters:
 SS00 – UP state, first stage of lifetime – UP state, first stage of lifetime
 SS11 – UP state, second stage of lifetime – UP state, second stage of lifetime
 SS22 – DOWN state, Resin reboot – DOWN state, Resin reboot
 SS33 – UP state, inspecting memory use – UP state, inspecting memory use
 SS44 – UP state, inspecting memory use – UP state, inspecting memory use
 SS55 – DOWN state, preventative restart – DOWN state, preventative restart
 λλ2ndstage 2ndstage = 1/6 hrs= 1/6 hrs
 λλfailure failure = 1/2 hrs= 1/2 hrs
 µµrestart_resin_worst restart_resin_worst = 47 seconds= 47 seconds
 λλinspect inspect = Rate of memory use inspection= Rate of memory use inspection
 µµinspect inspect = 21,627 microseconds= 21,627 microseconds
 µµrestart_resin_pm restart_resin_pm = 3 seconds= 3 seconds

 ResultsResults
 Infrequent checks could have an impact. Infrequent checks could have an impact.
 Only by implementing such a scheme Only by implementing such a scheme

and running experiments would we and running experiments would we
know for sure.know for sure.

 36

Towards a RAS-BenchmarkTowards a RAS-Benchmark
 Thought experimentThought experiment

 Type 1 – No detection capabilities.Type 1 – No detection capabilities.
 Type 2 – Perfect detection, no diagnosis or repair.Type 2 – Perfect detection, no diagnosis or repair.
 Type 3 – Perfect detection and diagnosis, no repair.Type 3 – Perfect detection and diagnosis, no repair.
 Type 4 – Perfect detection, diagnosis and repair.Type 4 – Perfect detection, diagnosis and repair.
 Type 5 – Perfect detection, but detectors turned off.Type 5 – Perfect detection, but detectors turned off.

 Expected rankingExpected ranking
 Type 1 < Type 5 < Type 2 < Type 3 < Type 4Type 1 < Type 5 < Type 2 < Type 3 < Type 4

 37

7-Step Evaluation “Recipe”7-Step Evaluation “Recipe”
 7U-Evaluation methodology7U-Evaluation methodology

 Combines fault-injection Combines fault-injection
experiments and RAS-models experiments and RAS-models
and metrics to evaluate systems.and metrics to evaluate systems.

 Establish a link between the Establish a link between the
mechanisms and their impact mechanisms and their impact
on system goals/constraints.on system goals/constraints.

 Highlights the role of the Highlights the role of the
environment in scoring and environment in scoring and
comparing system.comparing system.

 38

Part II SummaryPart II Summary
 RAS-models are powerful yet flexible toolsRAS-models are powerful yet flexible tools

 Able to analyze individual and combined Able to analyze individual and combined
mechanisms.mechanisms.

 Able to analyze reactive and preventative Able to analyze reactive and preventative
mechanisms.mechanisms.

 Capable of linking the details of the mechanisms to Capable of linking the details of the mechanisms to
their impact on system goals (SLAs, policies etc.)their impact on system goals (SLAs, policies etc.)

 Useful as design-time and post-deployment analysis- Useful as design-time and post-deployment analysis-
tools.tools.

 LimitationsLimitations
 Assumption of independence makes it difficult to Assumption of independence makes it difficult to

use them to study cascading/dependent faults.use them to study cascading/dependent faults.

 39

Accomplishments To DateAccomplishments To Date
 3 papers on runtime adaptations3 papers on runtime adaptations

 DEAS 2005 (Kheiron/CLR).DEAS 2005 (Kheiron/CLR).
 ICAC 2006 (Kheiron/JVM, Kheiron/C).ICAC 2006 (Kheiron/JVM, Kheiron/C).
 Chapter in Handbook on Autonomic Computing.Chapter in Handbook on Autonomic Computing.

 Submission to ICAC 2007Submission to ICAC 2007
 Using RAS-models and Metrics to evaluate Self-Using RAS-models and Metrics to evaluate Self-

Healing Systems.Healing Systems.

 40

TimelineTimeline

OngoingStart next round of RAS-experiments (Solaris,Linux,Win32)Aug. 2007

Thesis writingJan. 2008

Thesis defenseAug. 2008

OngoingBuild test machine for hardware & software fault injectionJul. 2007

OngoingWrite or acquire under NDA Solaris 10 fault-injection toolsJun. 2007

OngoingWrite proof of concept database fault injection toolMay. 2007

OngoingWrite device driver fault tool for Windows XPMar. 2007

OngoingPort Linux 2.4 device driver fault tools to Linux 2.6Mar. 2007

CompletedWrite Thesis ProposalFeb. 2007

CompletedSubmit paper on initial results to ICAC 2007Jan. 2007

CompletedRun preliminary RAS-benchmarking experimentsDec. 2006

CompletedBuild Linux-based test-bed for RAS-experimentsNov. 2006

CompletedBuild self-healing benchmark simulatorOct. 2006

OngoingBuild GUI front-end for Kheiron/JVMSep. 2006

AcceptedSubmitted Kheiron Paper to ICACJan. 2006

CompletedDevelop Initial Kheiron Prototypes

StatusWorkTimeline

 41

Expected ContributionsExpected Contributions
 Contributions towards a representative fault-model for Contributions towards a representative fault-model for

computing systems that can be reproduced using fault-computing systems that can be reproduced using fault-
injection tools.injection tools.

 A suite of runtime fault-injection tools to complement A suite of runtime fault-injection tools to complement
existing software-based and hardware-based fault-existing software-based and hardware-based fault-
injection tools.injection tools.

 A survey of the RAS-enhancing mechanisms (or lack A survey of the RAS-enhancing mechanisms (or lack
thereof) in contemporary operating systems and thereof) in contemporary operating systems and
application servers.application servers.

 Analytical techniques that can be used at design-time or Analytical techniques that can be used at design-time or
post-deployment time. post-deployment time.

 A RAS-benchmarking methodology based on practical A RAS-benchmarking methodology based on practical
fault-injection tools and rigorous analytical techniques.fault-injection tools and rigorous analytical techniques.

 42

Thank You...Thank You...
 Questions?Questions?
 Comments?Comments?
 Queries?Queries?

 43

Backup SlidesBackup Slides

 44

Kheiron Architecture from 10,000ftKheiron Architecture from 10,000ft

 45

How Kheiron WorksHow Kheiron Works
 Attaches to programs while they run or when they load.Attaches to programs while they run or when they load.
 Interacts with programs while they run at various points Interacts with programs while they run at various points

of their execution.of their execution.
 Augments type definitions and/or executable codeAugments type definitions and/or executable code
 Needs metadata – rich metadata is betterNeeds metadata – rich metadata is better

 Interposes at method granularity, inserting new Interposes at method granularity, inserting new
functionality via method prologues and epilogues.functionality via method prologues and epilogues.

 Control can be transferred into/out of adaptation Control can be transferred into/out of adaptation
library logiclibrary logic

 Control-flow changes can be done/un-done Control-flow changes can be done/un-done
dynamicallydynamically

 46

System OperationSystem Operation

Transfer control to
adaptation logic

Transfer control to
adaptation logic

Transfer control to
adaptation logic

Method exit

Augment module
metadata, MSIL
rewrite, force re-jit

No explicit
notifications

n/aMethod JIT

Transfer control to
adaptation logic

Transfer control to
adaptation logic

Transfer control to
adaptation logic

Method
invoke/entry

Augment type
definition, augment
module metadata

Augment type
definition, augment
module metadata,
bytecode rewrite

No real metadata to
manipulate

Module load

Load Kheiron/CLRLoad Kheiron/JVMAttach Kheiron, augment
methods

Application start

CLR 1.1JVM 5.x

Managed ApplicationsUnmanaged/Native
Applications
(C-Programs)

Time period/
execution event

 47

ExperimentsExperiments
 Goal: Measure the feasibility of our approach.Goal: Measure the feasibility of our approach.
 Look at the impact on execution when no Look at the impact on execution when no

repairs/adaptations are active.repairs/adaptations are active.
 Selected compute-intensive applications as test subjects Selected compute-intensive applications as test subjects

(SciMark and Linpack).(SciMark and Linpack).
 Unmanaged experimentsUnmanaged experiments

 P4 2.4 GHz processor, 1GB RAM, SUSE 9.2, 2.6.8x kernel, P4 2.4 GHz processor, 1GB RAM, SUSE 9.2, 2.6.8x kernel,
Dyninst 4.2.1.Dyninst 4.2.1.

 Managed experimentsManaged experiments
 P3 Mobile 1.2 GHz processor, 1GB RAM, Windows XP P3 Mobile 1.2 GHz processor, 1GB RAM, Windows XP

SP2, Java HotspotVM v1.5 update 04.SP2, Java HotspotVM v1.5 update 04.

 48

Unmanaged Execution Environment Unmanaged Execution Environment
MetadataMetadata

 Not enough information to support type discovery and/or
type relationships.

 No APIs for metadata manipulation.
 In the managed world, units of execution are self-

describing.

